NASA Contractor Report 4192

Sidewall Boundary-Layer Measurements With Upstream Suction in the Langley 0.3-Meter Transonic Cryogenic Tunnel

A. V. Murthy

CONTRACT NASI-17919

(NASA-CR-4192) SIDEWALL BOUNLARY-LAYER BEASUREMENTS WITH UPSTREAM SUCTION IN THE LANGLEY 0.3-METER TRANSONIC CFYOGENIC TUNNEL (Viqyan Research Associates) 57 p CSCL 01A

N89-12544

Unclas H1/02 0168963

NASA Contractor Report 4192

Sidewall Boundary-Layer
Measurements With Upstream
Suction in the Langley 0.3-Meter
Transonic Cryogenic Tunnel

A. V. Murthy Vigyan Research Associates, Inc. Hampton, Virginia

Prepared for Langley Research Center under Contract NAS1-17919

National Aeronautics and Space Administration

Scientific and Technical Information Division

			,

SUMMARY

The Langley 0.3-m Transonic Cryogenic Tunnel has provision for boundary removal from the sidewalls to reduce sidewall interference effects on the test data. This report describes the tests carried out to determine the change in the empty test section sidewall boundary-layer thickness at the model station with upstream boundary-layer mass removal. The boundary-layer measurements showed that the upstream removal region is effective in reducing the boundary-layer thickness at the model station. The boundary-layer displacement thickness reduced from about 1.2 percent to about .4 percent of the test section width. The boundary-layer velocity profiles followed a power law variation in the outer region and showed good correlation when plotted in terms of boundary-layer momentum thickness.

INTRODUCTION

The Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT) is a unique high Reynolds number airfoil test facility. Its first successful operation in 1973 demonstrated the application of cryogenic concept and showed the cooling of the test gas is both economical and practicable to generate high Reynolds number transonic flows. Since then, several additional features added at various stages, make 0.3-m TCT a unique facility for testing airfoils. Reference (1) gives a full description of the evolution and operational characteristics of the 0.3-m TCT.

In its present form, the 0.3-m TCT has two distinct features to overcome the limitation of conventional tunnels. First, the operation at low temperatures makes the test gas denser and less viscous. This cryogenic feature coupled with the capability to operate at increased pressures of about 6 atmospheres enables the testing of airfoil models at flight equivalent Reynolds numbers. Second, the application of the adaptive wall concept for the test section reduces wall interference. The adaptive floor and ceiling are of solid, flexible steel plates. The wall contours of the floor and ceiling are adjusted during a test to correspond to nearly free air streamline shapes. This helps to reduce significantly the wall interference effects on model measurements.

An additional source of interference arises in two-dimensional airfoil testing. The model flow field affects the growth of the boundary-layer on the sidewalls of the test section. This interaction gives rise to non-uniformity of the flow across the model span. It is difficult to compensate completely for sidewall effects by adjusting the top and bottom walls only. Hence, modern airfoil test facilities use some type of boundary-layer treatment on the sidewalls.

The 0.3-m TCT employs a boundary-layer removal system to reduce sidewall interference effects. The system consists of a pair of perforated plates mounted on the sidewalls upstream of the model station. The perforated plates act as suction medium to remove the boundary-layer mass flow. The flow coming out of the perforated plates exhausts directly to the atmosphere in the passive mode. In the active mode of operation, a compressor injects the flow back into the tunnel.

The mass flow removal from the test section sidewalls has two effects. First, the test Mach number at the model station changes. The drop in Mach number is approximately proportional to the amount of mass removed. In conventional tunnels with no provision for wall adjustment, a correction is necessary for Mach number change with mass flow removal. Adaptive walls have the advantage of adjusting the wall contours to give uniform Mach number distribution. Second, the boundary-layer thickness reduces due to removal of low energy mass in the boundary-layer. However, downstream of the suction region, the boundary-layer is much thinner and grows rapidly due to higher skin friction. Hence, if the model station is too far downstream, the benefits of boundary-layer removal becomes smaller.

For the 0.3-m TCT, there was no attempt during the design to optimize the location of the boundary-layer removal station. The primary effort was towards development of an advanced perforated plate and the associated boundary-layer removal system. With minor modification, it is possible to remove the boundary-layer at the model station or at a downstream station.

The suction region of the perforated plates currently being used in the 0.3-m TCT for boundary-layer removal is 6" wide. The downstream edge of the plates is 11.25" ahead of the model turntable center. This report gives details of the sidewall boundary-layer measurements made recently to determine whether the upstream removal location was effective in reducing the boundary-layer thickness at the model station. The tests conducted in the empty test section involved measurement of boundary-layer profiles on the sidewalls at the model station. The range of mass flow removal rates covered in these test were from zero to maximum obtainable with passive operation. The empty test section boundary-layer displacement thickness(δ^*) and shape factor (H) calculated from the profiles are useful in correcting airfoil test data for the sidewall effects.

NOMENCLATURE

b : Test section width

H: Boundary-layer shape factor

L : Reference length (1 inch)

m : Mass flow

M: Mach number

n : Index of power-law for the velocity profile $(U \propto y^{1/n})$

R: Reynolds number per foot

U : Velocity

y : Distance from the wallδ : Boundary-layer thickness

 δ^* : Boundary-layer displacement thickness

 θ : Boundary-layer momentum thickness

Subscripts

e : refers to conditions outside the boundary-layer

bl : refers to boundary-layer removal

ts : refers to test section

APPARATUS

0.3-m Transonic Cryogenic Tunnel

The 0.3-m TCT (figure 1) is a continuous fan driven tunnel using cryogenic nitrogen as test gas. A 3000 HP variable frequency motor drives the fan. The test Mach number is variable in the range from about 0.05 to 0.9. The stagnation pressure and temperature are variable in the range 1.2 - 6 atmosphere, and 80 - 320 K, respectively. The liquid nitrogen injected into the tunnel circuit before the first corner cools the tunnel to the required stagnation temperature. Under steady conditions, the cooling capacity of the liquid nitrogen is equal to the heat dissipated by the fan. An exhaust valve located near the third corner controls the stagnation pressure in the tunnel. A sophisticated control system enables independent variation of test Mach number, stagnation pressure and temperature.

Adaptive Wall Test Section

The adaptive wall test section (figure 2) has rigid sidewalls, and adjustable floor and ceiling. The cross section is a 13 inch square when the ceiling and floor are parallel. The overall length of the test section is 73.2 inches. Figure (3) shows a schematic arrangement of the 0.3-m TCT adaptive wall test section and the location of the boundary-layer removal region.

The flexible ceiling and floor are of stainless steel plates to withstand cryogenic operating conditions. The plate thickness varies along the length. At the upstream fixed end, the thickness is maximum (.375 inches). Near the turntable region, the plate is much thinner (.063 inch) to permit contouring the wall to the streamline shapes. The downstream end moves freely in a sliding joint. The flexible floor and ceiling are supported along the length at twenty-one locations by separate electrically operated jacks. Separate stepping motors drive each of these jacks to the desired contour. For operational convenience, the stepping motors and the jacks are outside the cryogenic environment and the pressure shell enclosing the test section. The push rod attachments between the plates and the jacks pass through the pressure shell. A micro-processor monitors the wall movements and limits the minimum radius of curvature to 30 inches to avoid excessive stresses.

The adjustment of wall shapes to free air streamline shapes requires a knowledge of the current wall position and the fluid velocity. Linear Variable Displacement Transducers (LVDT) located at the jack stations, and the pressure orifices on the plate provide this information. Using these data, a wall adjustment strategy calculates the wall position required to simulate the free air conditions in the tunnel. The calculation uses data at only the first eighteen jacks. The last three jacks provide a faring of the wall shapes to the test section exit or diffuser entry. Reference (2) describes in detail the adaptive wall test section and the wall adjustment strategy to eliminate interference.

Boundary-Layer Removal System

Figures (1) through (3) show 0.3-m TCT sidewall boundary-layer removal scheme. Reference (3) describes in detail the complete system. The purpose of this system is to reduce the sidewall boundary-layer thickness at the model station. The smaller boundary-layer thickness minimizes the tendency for separation and consequent adverse effects on the airfoil measurements. Also, the correction to test Mach number, if any, will be much smaller.

Figure (4) shows the details of the boundary-layer removal medium for the adaptive wall test section. It consists of a pair of perforated plates mounted flush on the tunnel sidewalls upstream of the model. The suction region of the perforated plates are 6" wide and 13" high. The plates extend from tunnel floor to the ceiling. The plates have fine holes drilled by using the electron beam technique. The holes are 0.012-inch diameter and 0.032-inch apart giving a nominal open area of about 11 percent. The perforated plates are glued to a honeycomb-large hole plate (fig 4) structure. This fabrication technique provided a rigid, porous medium for boundary-layer removal.

The surface exposed to the test section flow is smooth obtained by etching and polishing of the surface. Earlier studies (references 4 and 5) had shown that these perforated plates to be superior to conventional sintered type materials. With no flow, the boundary-layer growth due to surface roughness or hole openings will be much less for these plates. The boundary-layer mass taken out of the test section passes through digital flow control valves. These digital valves consist of a number of calibrated sonic nozzles. The nozzles open or close in appropriate combination to control the rate of mass removal from the test section. A dedicated micro-processor commands the opening and closing of the nozzles.

The boundary-layer removal system, as shown in figure 1, operates in two modes, either passive or active. In the passive mode of operation (figure 5), the boundary-layer mass removed exhausts directly to the atmosphere. Therefore, for this mode to be effective, the test section static pressure must be higher than the ambient value. Also, the maximum amount of boundary-layer mass taken out cannot exceed the amount of gas produced by the liquid nitrogen injected to remove heat of compression and maintain maintain test pressure and temperature. The amount of liquid nitrogen injected into the tunnel is considerable at higher Mach numbers due to larger power dissipation. Instead of the normal exhaust procedure, taking out nitrogen gas through boundary-layer removal system offers a convenient operating mode at transonic speeds.

The active mode is most useful at low test Mach numbers when the amount of liquid nitrogen injected is quite small. To maintain stable tunnel flow conditions, it is necessary to inject back most of the boundary-layer mass removed. The gas removed passes through a centrifugal compressor. The compressed gas then enters the tunnel circuit at the diffuser location. For the present tests, the boundary-layer removal system operation was in the passive mode for convenience.

Boundary-Layer Measurements

A boundary-layer rake (figure 6) mounted on the right sidewall turntable was used to measure the total pressures in the boundary-layer. The rake had 15 total pressure probes spaced equally .04in apart. The first tube of the rake was at a distance of about 0.04 inch from the wall. For most of the test conditions, the rake was within the sidewall boundary-layer. Hence, it was possible to obtain reliable estimates of the boundary-layer displacement thickness and shape factor. The probe tips were of stainless steel tubing with 0.02 inch outside diameter and 0.01 inch inside diameter. The probe tips were at a distance of 10.125 inch from the downstream edge of the suction region (Figure 6).

RESULTS AND DISCUSSION

For the test data in this report, the boundary-layer operation was in the mode. The adaptive wall ceiling and floor contours were set to aerodynamically straight shapes. Hence, with sidewall boundary-layer removal there was a slight drop in the Mach number at the turntable location. This change in Mach number does not have a major effect on the sidewall boundary-layer measurements. The stagnation temperature and pressure varied from about 125K to 230K, and 26 to 71 psi, respectively. The corresponding unit Reynolds number was 26.6 million per foot. With these conditions, the maximum amount of mass flow removal was about 1.7 percent (Figure 7) in the passive mode. For testing under conditions above Mach number of 0.7, the passive removal capability appears adequate.

Reference (6) gives the details of calculating the boundary-layer parameters from the measurements. The computer program described in reference (6), converts the boundary-layer rake total pressures to velocities. Integration of these velocities gives the displacement and momentum thicknesses and the shape factor. Figure (8) shows the calculated velocity profiles at the turn- table for a sample case at a Mach number of 0.766, with different levels of boundary-layer removal. With increasing suction rates, the velocity within the boundary-layer increases continuously. Figure (8) also demonstrates that the present upstream location of the boundary-layer removal station is still effective in reducing the boundary-layer thickness at the turntable.

Most of the data points in the boundary-layer lie in the outer region of the turbulent boundary-layer. Hence, the program of reference (6) uses a power law velocity variation for extrapolating the experimental data from the first tube to the wall. Figures 9a-c, compare the

results of power-law velocity variation with the measured velocities, for Mach numbers .5, .765 and .8. For all the conditions, the comparison indicates that the velocity profiles are close to power velocity variation.

The index n in the power law for velocity is a strong function of the suction velocity (figure 10). It increase from about 7 for zero mass flow removal to about 13 with maximum removal. The dependence on Mach number is not significant. For zero mass flow removal, it is close to 7 over the Mach number range 0.3 to 0.8 (Figure 11).

The displacement thickness and shape factor are of particular interest in correcting the test data for sidewall effects. Figures (12) and (13) show their variation with increasing mass flow removal. The displacement thickness is about 1.3 percent of the test section width when there is no mass removal. It reduces to about 0.6 percent with maximum removal. However, the mass flow removal is most effective from 0 to about 1 percent. Beyond one percent removal, the decrease in boundary-layer thickness is rather small. Also, with suction the initial spread in data at zero removal, almost vanishes.

The shape factor variation is similar for conditions with and without mass removal. The shape factor reduces by about .1 under maximum removal condition. The dependence on Mach number is strong. It increases from from 1.25 at low Mach numbers to about 1.4 at a Mach number of about .8.

Figures 14a-c compare the boundary-layer velocity profiles at different Mach numbers for fixed boundary-layer removal rates. This demonstrates that the sidewall boundary-layer velocity variation depends primarily on the rate of boundary-layer removal. The effect of Mach number is secondary. Figures 15a-c correlate the variation of the boundary-layer velocity with distance from the wall in terms of the boundary-layer momentum thickness (y/θ) . The data for different non-zero boundary-layer removal rates correlate satisfactorily.

The results presented in this report cover only one Reynolds number at 26.6 million per foot. Appendix A tabulates the calculated boundary-layer parameters and the velocity profile details for all the data points. At lower Reynolds numbers, the boundary-layer thickness will be larger. But with suction, the effect of Reynolds number may become secondary. With about 1.5 percent suction rate, the sidewall boundary-layer displacement thickness is about .4 percent of the test section width $(2\delta^*/b)$.

The correction for the airfoil test data for sidewall boundary-layer interference effects depends on the empty test section boundary-layer characteristics $(2\delta^*/b \text{ and H})$, the airfoil model aspect ratio and the test Mach number. At transonic speeds, the present boundary-layer measurements suggest that the maximum correction to the test Mach number will be about -0.004. This correction is based on one-dimensional changes in the flow area due to changes in the sidewall boundary-layer thickness. Three-dimensional effects tend to make the corrections much smaller. It may be noted that the correction is valid only as long as the boundary-layer remains attached to the sidewall.

CONCLUSION

Sidewall boundary-layer measurements at the model location show that the upstream removal location is quite effective. The boundary-layer displacement thickness reduces from about 1.2 percent to about .4 percent of the test section width, with passive boundary-layer removal. The measured velocity profiles follow a power law variation in the outer region and show good correlation when plotted in terms of boundary-layer momentum thickness.

REFERENCES

- Ladson, C. L.; and Ray, E. J.: Evolution, Calibration, and Operational Characteristics of the Two-Dimensional Test Section of the Langley 0.3-Meter Transonic Cryogenic Tunnel. NASA Technical Paper 2749, September 1987.
- Wolf, S. W. D.: Evaluation of a Flexible Wall Testing Technique to Minimize Wall Interferences in the NASA Langley 0.3-m Transonic Cryogenic Tunnel. AIAA Paper 88-0140, Jan. 1988.
- 3. Johnson, C. B.; Murthy, A. V.; and Ray, E. J.: A Description of the Active and Passive Sidewall-Boundary-Layer Removal Systems of the 0.3-Meter Transonic Cryogenic Tunnel. NASA Technical Memorandum 87764, November 1986.
- 4. Murthy, A. V.; Johnson, C. B.; Ray, E. J.; Lawing, P. L.; and Thibodeaux, J. J.: Studies of Sidewall Boundary-Layer in the Langley 0.3-Meter Transonic Cryogenic Tunnel With and Without Suction. NASA Technical Paper 2096, March 1983.

- 5. Murthy, A. V.; Johnson, C. B.; Ray, E. J.; and Stanewsky, E.: Investigation of Sidewall Boundary-Layer Removal Effects on Two Different Chord Airfoil Models in the Langley 0.3-Meter Transonic Cryogenic Tunnel. AIAA Paper 84-0598, March 1984.
- Murthy, A. V.: Calculation of Sidewall Boundary-Layer Parameters from Rake Measurements for the Langley 0.3-Meter Transonic Cryogenic Tunnel. NASA Contractor Report 178241, February 1987.

TABLE I
Summary of 0.3-m TCT Sidewall Boundary-Layer Measurements
(TEST: 213)

			· 								
T	R	P	М	R _e	P _t psi	T _t	m Խ 0%	δ/L	δ^*/\mathbf{L}	θ	Н
213-	0.3	0.1	.7025	.269E+08	70.01	220.7	0.00		0000	0.40.5	
213-			.7023		70.91	230.7	0.00	.6666	.0889	.0605	1.47
				.270E+08	71.12	230.6	0.50	.5415	.0572	.0406	1.40
213-			.7037	.269E+08	70.89	230.6	1.00	.4961	.0464	.0335	1.38
213-	03-	04	.7032	.269E+08	70.88	230.6	1.40	.4700	.0405	.0294	1.37
213-	04-	05	.7324	.269E+08	69.23	230.8	0.00	.6528	.0857	.0580	1.47
213-	04-	06	.7333	.269E+08	69.08	230.7	0.50	.5305	.0554	.0390	1.42
213-	04-	07	.7310	.269E+08	69.24	230.6	1.00	.4981	.0466	.0333	1.40
213-	04-	08	.7308	.270E+08	69.39	230.7	1.60	.4635	.0385	.0278	1.38
213-	05_	nα	.7516	.266E+08	67.50	230.9	0.00	6367	0005	0544	
213-			.7523	.269E+08			0.00	.6267	.0805	.0544	1.48
213-					68.18	231.0	0.50	.5369	.0565	.0395	1.43
			.7511	.270E+08	68.52	230.8	1.00	.4903	.0451	.0320	1.40
213-	03-	12	.7497	.268E+08	68.04	230.6	1.60	.4578	.0373	.0267	1.39
213-			.7622	.269E+08	67.53	230.8	0.00	.6371	.0829	.0556	1.49
213-	06-	14	.7599	.268E+08	67.53	231.1	0.50	.5326	.0554	.0387	1.43
213-	06-	15	.7607	.267E+08	67.21	230.8	1.00	.4975	.0464	.0328	1.41
213-	06-	16	.7630	.269E+08	67.58	230.6	1.70	.4567	.0367	.0262	1.39
213-	07-	18	.7794	.268E+08	66.78	231.1	0.00	.6247	0010	0541	1.40
213-			.7816	.270E+08	66.86	230.9	0.50		.0810	.0541	1.49
213-			.7807	.269E+08				.5305	.0553	.0382	1.44
213-			.7807		66.77	230.8	1.00	.4895	.0455	.0319	1.42
213-	07-	21	./600	.266E+08	66.02	230.8	1.76	.4517	.0356	.0253	1.40
213-	08-	22	.8000	.268E+08	66.45	232.8	0.00	.6093	.0792	.0524	1.51
213-	-80	23	.8048	.267E+08	65.44	231.1	0.50	.5322	.0556	.0381	1.45
213-	08-	24	.8005	.270E+08	66.13	231.0	1.00	.4897	.0457	.0318	1.43
213-	08-	25	.8048	.272E+08	66.37	230.8	1.80	.4473	.0343	.0242	1.43
							1.00	.4475	.0343	.0242	1.41
213-			.6539	.269E+08	74.42	230.7	0.00	.6284	.0807	.0562	1.43
213-	09-	28	.6498	.269E+08	74.55	230.6	0.50	.5341	.0550	.0399	1.37
213-	09-	29	.6535	.271E+08	74.80	230.6	1.00	.4962	.0463	.0340	1.36
213-	10-	32	.2988	.270E+08	63.08	130.5	0.00	.5948	.0708	.0541	1.30
213-			.3031	.275E+08	62.97	129.8	0.50	.5313	.0546		
213-			.3013	.273E+08	62.90	129.8				.0430	1.26
2132	10-	J -7	.5015	.213E+U0	02.90	127.8	0.80	.4973	.0466	.0372	1.25
213-			.5016	.271E+08	40.35	129.7	0.00	.6161	.0758	.0556	1.36
213-			.4995	.270E+08	40.35	129.8	0.50	.5446	.0565	.0427	1.32
213-	11-	37	.4997	.266E+08	39.65	129.8	1.00	.5049	.0467	.0359	1.29
											

TABLE I
Summary of 0.3-m TCT Sidewall Boundary-Layer Measurements
(TEST: 213)

T R P	M	R _e	P _t psi	T _t	m %	δ/L	δ*/L	θ Ι	H -
213- 12- 38	.8189	.265E+08	28.70	130.4	0.00	.6191	.0785	.0519	1.51
213- 12- 39	.8213	.267E+08	27.13	125.0	0.50	.5399	.0569	.0387	1.46
213- 12- 40	.8187	.266E+08	27.10	124.9	1.00	.4905	.0451	.0312	1.44
213- 12- 41	.8196	.262E+08	26.67	124.9	1.80	.4578	.0361	.0254	1.42
213- 13- 42	.8405	.268E+08	35.49	151.7	0.00	.6291	.0795	.0522	1.52
213- 13- 44	.8393	.269E+08	35.49	151.5	0.50	.5351	.0554	.0375	1.47
213- 13- 45	.8454	.269E+08	35.41	151.3	1.00	.5078	.0475	.0325	1.45
213- 13- 46	.8431	.271E+08	35.68	151.4	1.66	.4623	.0368	.0256	1.43

Figure 1: Schematic Layout of the Langley 0.3-Meter Transonic Cryogenic Tunnel

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2: Adaptive Wall Test Section of the 0.3-m TCT

0.3-m TCT ADAPTIVE WALL TEST SECTION

Figure 3: Location of Ceiling and Floor Jacks, and Perforated Plates for Boundary-Layer Removal

ORIGINAL PAGE IS DE POOR QUALITY

Figure 4: Details of Perforated Plates used for Boundary-Layer Removal

SIDEWALL BOUNDARY-LAYER REMOVAL PASSIVE BLEED SCHEME

Figure 5: Side Wall Boundary-Layer Passive Removal Scheme

Figure 6: Boundary-Layer Rake Total Pressure Tubes (Enlarged View)

Figure 7: Passive Boundary-Layer Removal Capability Variation with Mach Number

Figure 8: Boundary-Layer Velocity Profiles for Different Suction Rates

Figure 9a: Comparison of Measured Velocity Profiles with Power-law variation

Figure 9b: Comparison of Measured Velocity Profiles with Power-law variation

Figure 9c: Comparison of Measured Velocity Profiles with Power-law variation

Figure 10: Variation of Index n in Power-law with Rate of Suction

Figure 11: Variation of Index n in Power-law with Mach number for Zero Suction Rate

Figure 12: Variation of Side Wall Boundary-Layer Displacement Thickness at Model Station with upstream suction.

Figure 13: Variation of Side Wall Boundary-Layer Shape Factor at Model Station with upstream suction.

Figure 14a: Comparison of Boundary-Layer Profiles for Different Mach Numbers with no Mass Flow Removal.

Figure 14b: Comparison of Boundary-Layer Profiles for Different Mach Numbers with 0.5 percent Mass Flow Removal.

Figure 14c: Comparison of Boundary-Layer Profiles for Different Mach Numbers with 1.0 percent Mass Flow Removal.

Figure 15a: Correlation of Boundary-Layer Profiles in terms of Momentum
Thickness for M=0.5

Figure 15b: Correlation of Boundary-Layer Profiles in terms of Momentum Thickness for M=0.765

Figure 15c: Correlation of Boundary-Layer Profiles in terms of Momentum Thickness for M=0.8

APPENDIX A

0.3-M TCT ADAPTIVE WALL TEST SECTION SIDEWALL BOUNDARY-LAYER MEASUREMENTS

0.3-M TCT ADAPTIVE WALL TEST SECTION RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS	213 · 3 · 2 0.50% TOTAL BL REMOVAL PORT=0	AVERAGE MACH NUMBER AVERAGE REYNOLDS NUMBER/FT AVERAGE STAGNATION PRESSURE PSIA 71.1248 AVERAGE STAGNATION TEMPERATURE K 75600 RATIO OF SPECIFIC HEATS RECOVERY FACTOR REFERENCE LENGTH SCALE L (INCHES)	ILE : 9.675 TA/L : .541 STAR/L : .057 : 1.408	A: DISPLACEMENT AND MOMENTUM THICKNESS REFER TO COMPRESSIBLE VALUES. B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED USING POWER-LAW FROM WALL TO FIRST TUBE.	NO. Y/L M/MINF P/PT T/TINF U/UINF	0337 .7345 .8626 1.0395 .748	1184 . 8434 . 9122 1.0244 . 853	778. 1.0207 1.0208 . 9251 1.0207 . 877	2272 . 9110 . 9475 1.0143 . 917	3043 .9415 .9648 1.0095 0.44	9 .3417 .9534 .9717 1.0076 .957	. 5903	. 4696 . 9856 . 9911 1.0024 . 986	5 .5114 .9924 .9952 1.0013 .993 4 .5567 .9950 .9960 1.0013 .55	9. 10001
SECTION Asurements	MOVAL PORT=0	: .269E+08 : .269E+08 : .70.9145 : .230.7589 : .7600 : .9126	. 7.4295 6666 0889 0605 4700	ESS REFER ESS CALCULATED ST TUBE.	2 -	1.0467 .6939 1.0399 .7464	.0351 .780	. 0280 . 830	.0222 .846	.0184 .892	.0115 .0111	.0082 .953	.0058 .967	.0020	.0010 .994
E WALL IEST ARY-LAYER ME	TOTAL BL RE	FT RATURE K L (INCHES)	PROFIL DELTA ELTAST /L	NTUM THICKN S. NTUM THICKN WALL TO FIR	٩.	.8403	876 886	006	908 919	932	959	696	978 986	992	966
WALE BOUNDA	1 0.00%	UMBER LDS NUMBER/ ATION PRESS ATION TEMPE FIC HEATS OR SCALE	POWE THICK NESS	T AND MOME 18LE VALUE T AND MOME -LAW FROM	~	. 7320	789	818	858	883	931	676	906	786	766
RIGHT SIDES	3 . 3	RAGE REYNOL RAGE STAGNA RAGE STAGNA RAGE STAGNA NDTL NUMBER 10 OF SPECT OVERY FACTO	JE OF N IN IDARY-LAYER LACEMENT T SUTUM THICK F FACTOR	ISPLACEMEN O COMPRESS ISPLACEMEN ISPLACEMEN		.0754	153	195	262	304	390	2 5 8	10	5.56	χ >
-	213	A A A A A A A A A A A A A A A A A A A	O I O E E E E E E E E E E E E E E E E E	. 8 . ∪ ∪		- 0 +	1 4	rv «) ~ (∞ 0-			13.		

ECTION Surements	OVAL PORT=0	0700000	: 11.6376 : .4700 : .0405 : .0294 : 1.3775	ESS REFER ESS CALCULATED ST TUBE.	TINF U/UINF	1.0350 .7827 1.0254 .8475	.0143 .917	.0103 .941	.0067	.0049 .972 .0035 .980	.0020 .989	.0011 .994	. 0000. 899.	966. 7000.	.0002
LL TEST S' LAYER MEA	AL BL REM	PSIA URE K INCHES)	DFILE ELTA/L TASTAR/L	UM THICKNE UM THICKNE LL TO FIRS	۰	. 9088	777	961	9 0 0	981 986	665	966	, a	866	566
ADAPTIVE WA Ll boundary ·	1.40% TOT	MBER S NUMBER/FT ION PRESSURE ION TEMPERAT IC HEATS H SCALE L (OWER LAW PROTHICKNESS DICKNESS DEL'ESS THETA/L	T AND MOMENTUIBLE VALUES. T AND MOMENTU	2	. 8369	384	936	947 958	970	988	66	000	0.00	366
0.3-M TCT HT SIDEWA	3 - 2	E MACH NU E REYNOLD E STAGNAT E STAGNAT L NUMBER OF SPECIF NY FACTOR	OF N IN PRY-LAYER CEMENT THUM THICKN	PLACEMEN COMPRESS PLACEMEN NG POWER	1/1	.0337	1 1 8	95	227 262	307	- 0 0 0	4 2 8	46	556	26.5
8 I G	213 .	AVERAGI AVERAGI AVERAGI PRANDT RATIO RECOVE	VALUE BOUNDA DISPLA MOMENT	A: DIS 10 B: DIS USI	. 0 2	- 2	M ×	4 IV	9	- co (, <u>-</u>	7.	12	2 - 7	12
	0=.	037 + 08 912 354 000 126	461 961 464 335 878	ATED	U/UINF	9326	8 7 8	902 927	9 9	962	972	0 0 0 0	666	966	. 8 . 6 . 6
ECT TON Surements	OVAL PORT	269E4 70.89 70.89 1.230.65	1.8	ESS REFER ESS CALCUL ST TUBE.	T/TINF	50	20	116	010.	900	.005	.003	.001	000.	000.
ALL TEST S -LAYER MEA	TAL BL REM	E PSIA TURE K (INCHES)	FILE LTA/ ASTA	TUM THICKN TUM THICKN ALL TO FIR	P / P T	371	925	938	960	967 975	981	988	7 7 7 7 7	66	.9982
ADAPTIVE W L BOUNDARY	1.00% TO	MBER S NUMBER/FT ION PRESSUR ION TEMPERA IC HEATS H SCALE L	WER LAW PHICKNESS CKNESS OF	AND MOMEN BLE VALUES AND MOMEN LAW FROM W	H/HINF	757	698	895	726	946	696	981	9 6 9 6 9 6	966	.9972
0.3-M TCT HT SIDEWAL	м , м	E MACH NUI E STAGNAT E STAGNAT E STAGNAT E NUMBER OF SPECIF NOF FACIOR	OF N IN PORT OF N IN PORT OF THE CEMENT THE FACTOR	PLACEMENT COMPRESSI PLACEMENT NG POWER-	۲/۲	333	118	153	195 227	262	341	390	428	517	5567
A 16.	213 .	AVERAGAVERAGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGAVERAVERAVERAVERAVERAVERAVERAVERAVERAVER	ALUE OUND ISPL	: 01 10 10 US	0 2		~ ~	14	v v	~ 0	۰ ٥	10	- ;	- 1 2	145

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE 10 OF POOR QUALITY

		OF POOR QUALITY	<u></u>	0	•	8	~	vo	•	9	2	827	0	2	ø	œ	Ø	ထ	
v	R T = 0	7308 1937 7121 7600 4000 9126 0000 1708 4635 .0278 .3858 .14635	U/UIN	/	8	ø	٥	0	0	Ó	0	8	6	0	Ò	o	o	0	
T I ON R E M E N T	VAL PO	. 270 . 69. . 230. . 11. . 12. . 12. . 12. . 14. . 14.	/11	036	.026	018	.014	010		900	700	1.0033	.001	.001	000.	000.	000.	000.	
EST SEC	BL REMOV	SIA K HES) HICKNES	T 14,	2.1	5.7	17	7.1	7 0		- 4		874	3.0	63	73	88	85	91	
WALL T	TOTAL	FERTURE PS SURE PS L (INC) PROFIL S DELTAST A/L A/L IENTUM T I WALL T	۵	•	0	O	. 0	. 0	. c	> 0	٠ ٥		٠,	٠ ٥	Ò	0	0	0	
ADAPTIVE L BOUNDA	1.60%	BER NUMBER ON PRES ON TEMP C HEATS SCALE ICKNESS ICKNESS ICKNESS ICKNESS AND MOW BAND MOW BAND MOW AND MOW LAW FROM	M/MINF	776	7	0			- C	7 7 7	7 6	. 4 / 4 0	- 0 0 0	700	266	866	266	866	
.3-M TCT T SIDEWAL	8 . 4	MACH NUM REYNOLDS STAGNATI STAGNATI STAGNATI NUMBER F SPECIF F N IN PO Y-LAYER THICKNI ACTOR ACTOR ACTOR ILACEMENT ILACEMENT ILACEMENT IC POWERS	٨/٢	7	, ,		9 6	7)) (777	707	5 C 4	- C) a) (C	, L		. 5981	
0 R 1 G H	213 -	AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE PRANDTL RATIO O REFEREN VALUE O DISPLAC MOMENTU SHAPE F TO C B: DISP	0 2		- ɾ	4 6	^ \	J 1	Λ.	9 1	<u> </u>	æ ¢	> 4	0.		7 2		- - -	1
					9	κi	0		.7	33	17	8	<u>6</u>	80	96	25	0.5	2 / S	0
σ	R 1 = 0	7310 2463 2463 6756 7600 4000 9126 0000 0481 4081 4007	U/UINF		7.7	33	37	90	92	93	95	96	6	8	800	66	9	200	<u>,</u>
ECT I ON Surement	OVAL PO	2698 	T/TINF		.039	.029	.022	.017	.013	011	.009	0.07	.005	.003	.002	.001	000	1.0005	0
ALL TEST S -LAYER MEA	TAL BL REM	E PSIA TURE K (INCHES) OFILE ELTA/L TASTAR/L UM THICKN (LL TO FIR	P / P T		863	895	919	934	676	957	965	73	626	987	665	995	66	.9982	Š
ADAPTIVE W	1.00% TO	HBER S NUMBER/FI ION PRESSUR ION TEMPERA IC HEATS H SCALE L HICKNESS DE ICKNESS DE ESS THETA/ ESS THETA/ ESS THETA/ ESS THETA/ ESS THETA/ AND MOMEN AND MOMEN LAW FROM W	E X	:	758	324	369	39.5	100	7 6	976	959	696	981	988	992	966	. 9973	998
0.3-M TCT HT SIDEWAL	7 - 4	E MACH NUI E STAGNAT E STAGNAT E STAGNAT E STAGNAT OF SPECIF OF SPECIF RY FACTOR NCE LENGT NCE LENGT NCE LENGT PLACEMENT FACTOR FACTOR FACTOR			7 3 3	0.75	1 2 8	. 2	, 0	- v -	7	307	341	390	428	597	511	.5567	2 6
R 1 G F	213 -	AVERAGE AVERAGE AVERAGE PAVERAGE PATIO PATIO VALUE VALUE OUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA BOUNDA	2		-	۰ ۸	۸ ۱	۰ ۱	t u	n 4	۸ ۵	- α	• •	10		12	13	14	15

ADAPTIVE WALL TEST SECTION	UNDARY-LAYER MEASURFMENTS
0.3-M TCT ADAF	IDEWALI

0.5-M T RIGHT SIDE	TCT ADAPTIVE EWALL BOUNDAR	WALL TEST RY·LAYER M	SECTION EASURENE	SLX	œ	O.3-M T	CT ADAPTIVE WALL BOUNDAI	WALL TEST RY-LAYER M	SECTION EASUREMEN	S L
213 · 5 ·	9 0.00× 1	TOTAL BL RI	EMOVAL	PORT = 0	213	. 5	0 0.50%	TOTAL BL R	EMOVAL P	ORT=0
AVERAGE MACH AVERAGE STAGN AVERAGE STAGN AVERAGE STAGN PRANDTL NUMBEN PRATIO OF SPEC RECOVERY FACT	NUMBER LDS NUMBER/ ATION PRESS ATION TEMPE IFIC HEATS OR	URE PSIA RATURE K (INCHES)		.7516 66E+08 7.5030 0.9341 .7600 1.4000	A A A A A A A A A A A A A A A A A A A	AGE MACH I AGE REYNOI AGE STAGN/ AGE STAGN/ OTL NUMBER VERY FACTC	NUMBER LDS NUMBER/F ATION PRESSU ATION TEMPER IFIC HEATS OTH SCALF	T RE P ATURE	23.5	. 7523 9E+08 . 1838 . 7600 . 4000
ALUE OF OUNDARY.	POWER LAW	PROFILE DELTA/L		7.9104	D L C	OF N IN	POWER LAW THICKNESS	ROFILE DELTA/L	- 0	98 60 60 60 60 60 60 60 60 60 60 60 60 60
DISPLACEMENT MOMENTUM THIC SHAPE FACTOR	THICKNESS D KNESS THETA	ELTASTAR/L /L		.0805 .0544 1.4813	DISPL Momen Shape	ACEMENT T TUM THICK FACTOR	HICKNES NESS TH	LTASTA		0.56 0.39 4.32
A: DISPLACEME TO COMPRES B: DISPLACEME USING POWE	NT AND MOME SIBLE VALUE NT AND MOME R-LAW FROM	NTUM THICKNS: NTUM THICKNWALL TO FIR	NESS REFINESS CALORERS TUBE	ER CULATED	. A 	SPLACEMEN COMPRESS SPLACEMEN	T AND MOMEN 18LE VALUES T AND MOMEN 'LAW FROM W	TUM THICK TUM THICK ALL TO FII	NESS REFER NESS CALCU RST TUBE.	LATED
_	Z	P/PT	T/TINF	U/UINF		۲/۲	H/MINF	7 / P	T/TINF	U/UINF
.033	693	827	.051	710	-	033	737	ν, α	ò	,
.075	748	852	.042	764	7	075	801	878	.034	2.5
. 153	0 C	ο α α	.05	967	~	118	845	905	.027	85
. 195	836	897	. 028	2 2 2 2	4 m	105	871	916	.023	88
.227	854	206	.025	865	9	227	912	941	8 10 .	90
8 .3043	. 9010	920	.022	800	~ ∝	262	27	5.1	0.13	9.5
9 .341	920	976	014	926	• •	3 6 4	7 O V 7 U	961	010	76
0 3 0 0	776	962	.010	676		390	0 2 0	000	800.	9.0
1 . 428	096	972	.007	964		428	980	986		` o
697.	973	981	.005	975		695	986	000	000	ο α Ο α
116. 2	200	989	.002	985		511	993	966	00.	9 0
5	995	. 9968 8969.	1.0017	. 9917	15 4	. 5981	9566.	9966.	1.0008	966

0.3-M TCT ADAPTIVE WALL TEST SECTION RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS	213 · 5 · 12 1.60% TOTAL BL REMOVAL PORT=0	AVERAGE MACH NUMBER AVERAGE REYNOLDS NUMBER/FT AVERAGE STAGNATION PRESSURE PSIA AVERAGE STAGNATION TEMPERATURE K C 330.6618 PRANDTL NUMBER RATIO OF SPECIFIC HEATS RECOVERY FACTOR REFERENCE LENGTH SCALE L (INCHES) 1.0000	ALUE OF N IN POWER LAW PROFILE : 12.4592 JOUNDARY-LAYER THICKNESS DELTA/L : .4578 J	DISPLACEMENT THICKNESS DELTASTAR/L : .0373 OC : .0267 O	A: DISPLACEMENT AND MOMENTUM THICKNESS REFER TO COMPRESSIBLE VALUES. B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED USING POWER-LAW FROM WALL TO FIRST TUBE.	NF P/PT T/TINF U/UINF	337 .7802	1184 . 8938 . 9306 1.0191 . 902	. 1530 . 9197 . 9466 1.0145 . 758	958 1,0083 .958	2624 .9650 .9759 1.0064 .968	3043 .9752 .9828 1.0046 .977	9 3417 .9828 .9889 .9858 .9937 .9991	966. 8000.1 6966. 9566. 627	766. 900.1 7766. 7966. 9697.	3 .5114 .9989 .9992 1.0002 .999	2567 . 2568 1.0003 . 2588 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556.	5 5981
0.3-M TCT ADAPTIVE WALL TEST SECTION RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS	213 - 5 - 11 1,00% TOTAL BL REMOVAL PORT=0	BER NUMBER/FI ON PRESSURE ON TEMPERATU C HEATS	EFERENCE LENGTH SCALE L (INCRES)	ISPLACEMENT THICKNESS DELTAS OMENTUM THICKNESS THETA/L HAPE FACTOR	A: DISPLACEMENT AND MOMENTUM THICKNESS REFER TO COMPRESSIBLE VALUES. B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED USING POWER-LAW FROM WALL TO FIRST TUBE.	NO. Y/L M/MINF P/PT T/TINF U/UINF	77. 1.0406 .778	0754 . 8278 . 8927 1.030	1184 .8/31 .9162 .252	1955 9251 9498 1.0136 .931	2272 . 9374 . 9576 1.0115 . 942	**** 2401.1 9556. 7949. 2525.	. 3043 . 9804	989. 1500.1 .9883 .9883	7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 .4696 .9936 .9955 1.0012 .994	5 114 . 9973 . 9981 1.000 . 5797 . 5979 . 59	2 1.0002

	EMOVAL PORT=0 : .268E+08 : 67.5317 : 231.1243 : .7600	. 912 . 912 1.000 10.031	0388.	ESS REFER ESS CALCULATED ST TUBE.	T/TINF U/UINF	.0450 .756 .0348 .818	.0230 .884 .0182 .909	0131 . 935	1.0054 .9742 1.0036 .9829 1.0024 .9886 1.0012 .9943	0004
E WALL TEST ARY-LAYER M	TOTAL BL RE/FT/FT Sure PSIA Erature K	L (INCHES) PROFILE S DELTA/L	AST	ENTUM THICKNES. ENTUM THICKN	P / P T	845 877 902	237	951 961 969	. 9955 . 9955 . 9955 . 9955	866
CT ADAPT WALL BOU		GTH SCALE POWER LA R THICKNE	THICKNESS CKNESS THET	ENT AND MOMISSIBLE VALUIENT AND MOMIER.	M/MINF	740 804 848	874 901 915	929 945 956	. 9716 . 9811 . 9874 . 9937	866
X C	ERAGE MACH ERAGE REYN ERAGE STAGI ERAGE STAGI	COVERY FAC FERENCE LE LUE OF N II	SPLACEMENT MENTUM THI APE FACTOR	DISPLACEME TO COMPRES DISPLACEME USING POWE	>	033 075 118	153 195 227	262 304 341	.3903 .4289 .4696 .5114	9 6 9
	44462	a a > a a a > a	ONO	 ≪ es	ON	. 3 2	400	~ 80 6	0 1 1 1 2 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	15
E N 1 S	.762 9E+0 .533 .879 .760	912 000 000 821 637	.0829 .0556 1.4910	FER LCULATED E.	N/UINE	707.	. 845	. 905	. 9641 . 9611 . 9730 . 9843	566.
EST SECTIOR MEASUREM		ŝ		CKNESS RECKNESS CAL	/111	.038	.030	019	1.0081 1.0081 1.0033 1.0019	000.
IVE WALL T NDARY-LAYE X TOTAL B	R/FT SSURE PS PERATURE S	L CINCH W PROFILE SS DELTA/	DELTASTAR Ta/l	MENTUM WENTUM MENTUM MENTUM	P / 8	248. 248.	908.	930	0,60,60,00,00,00,00,00,00,00,00,00,00,00	0
TCT ADAPTI DEWALL BOUN 13 0.00%	NUMBER OLDS NUMB NATION PR NATION TE ER	R PO	THICKNES CKNESS TH	0 - 0 0	M 1 P	74477803803	8328850	896 916	. 9826 . 9826 . 9800 . 9900	
0.3-M RIGHT SIC	ERAGE MACH ERAGE REYN ERAGE STAG ERAGE STAG ANDTL NUMB TIO OF SPE	ERENCE LUE OF N NDARY-LA	ACEM TUM FAC	DISPLACEM TO COMPRE DISPLACEM USING POL	7 / 0	075 118 153	195 227 262	304	. 4289 . 4696 . 5114 . 5567 . 5981	

CT 10N Urements	VAL PORT=0	269E + 08 269E + 08 67 . 5874 230 . 6847 7600 	12.700 12.700 . 456 . 036 . 026 1.398	S REFER S CALCULATED TUBE.	TINF U/UINF	.0386 .797 .0276 .860 .0194 .904	.0146 .928 .0103 .950	0045 . 978	266. 1500. 2000. 8000.	1.0007 .9969 1.0003 .9987 1.0004 .9981 1.0002 .9988	
WALL TEST SE Y-LAYER MEAS	OTAL BL REMO	U RE SI	(INCHES) ROFILE DELTA/L LTASTAR/L L	THICK NET THICK NET THE THE THE THE THE THE THE THE THE T	L .	8656 9016 9297	9462 9619 0603	9761	0000 0000 0000 0000	. 9975 . 9989 . 9985 1999.	
T ADAPTIVE V All Boundary	1.70% T	UMBER DS NUMBER/F TION PRESSU TION TEMPER FIC HEATS	POUER LAW POUER LAW PTHICKNESS DE HICKNESS DE NESS THETA/	T AND HOMEN 1BLE VALUES 1 AND HOMEN - LAW FROM W	z (782 848 895	921	966	991 991 995	. 9965 . 9985 . 9979 . 9987	
O.3-M TC IGHT SIDEW	. 6 - 16	AGE REYNOL AGE REYNOL AGE STAGNA AGE STAGNA DTL NUMBER O OF SPECTO	KENCE LEN DARY-LAYEN LACENENT THIC	I SPLACOMI O COMI I SPLAC SING	> 1	033 075 118	153	262	341 390 428	. 5567 . 5567 . 5981	
œ	213	A A A G G G G G G G G G G G G G G G G G	A P P P P P P P P P P P P P P P P P P P	o ⊢ o ⊃	∡	- um	4104	0 ~ 8	100	12 14 15	
v	RT = 0	7607 2186 8500 4000 9126	00 44 97 32 15	LATED	U/UINF	776 838	905	940 952 963	972	. 9932 7996. 79972 5890	0
SECTION Easurements	EMOVAL POR		5 5 5	NESS REFER Ness calcu Rst tube.	T/TINF	042	190	012	005	1.0007	2
WALL TEST RY-LAYER ME	TOTAL BL RE	FT URE PSIA RATURE K	L (INCHES) PROFILE DELTA/L ELTASTAR/L /L	NTUM THICK S. NTUM THICK WALL TO FI	P/PT	7.88	9 7 6 9 4 6	955	978	9466.	χ Υ
T ADAPTIVE All Boundal	1.00%	UMBER DS NUMBER/ TION PRESS TION TEMPE FIC HEATS	TH SCALE POWER LAW THICKNESS HICKNESS D	T AND MOME IBLE VALUE IT AND MOME	M/MINF	760	8 7 U 8 9 6 9 2 2	935	969	2886 8866 8966 8966	866
0.3-M TC IGHT SIDEW	. 6 - 15	AGE MACH NAGE REYNOL AGE STAGNA AGE STAGNA AGE STAGNA OTL NUMBER OF SPECI	RENCE LEN BARY-LAYE LACEMENT NTUM THIC	DISPLACEMEN TO COMPRESS DISPLACEMEN USING POWER	1/L	033	118 153 195	227	390	. 55 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	508
~	213	A A A A A A A A A A A A A A A A A A A	E F OU OU I S	 4 8	0 M	- 21	w 4 ru	· o ~ o	000	L 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<u>.</u>

SECTION ASUREMENTS	MOVAL PORT=0	2 7 0 8 1 6 2 7 0 E + 0 8 66 . 86 9 2 2 30 . 90 1 0 7 6 0 0 9 1 2 6 1 . 0 0 0 0	0 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ESS REFER ESS CALCULATED ST TUBE.	T/TINF U/UINF	. 0474	.0288 .861	.0241 .885	.0164 .923		.0085 .961 .0056 .974	. 0037	.0024 .989	1.0008 .9965 1.0003 .9985
WALL TEST	TOTAL BL RE	INTE PSIA RATURE K L (INCHES)	PROFILE DELTA/L ELTASTAR/L /L	NTUM THICKN S. NTUM THICKNI WALL TO FIR	P / P T	838	897	913 930	076	960	900	986	990	9987
TCT ADAPTIVE EWALL BOUNDA	19 0.50%	NUMBER OLDS NUMBER/ NATION PRESS NATION TEMPE ENFIC HEATS TOR	N POWER LAW ER THICKNESS THICKNESS D	NT AND MOME SIBLE VALUE NT AND MOME R-LAW FROM	M/MINF	741	849	902	16	945	971	981	900	9962
0.3-M	213 - 7	VERAGE MACH VERAGE REYNC VERAGE STAGN VERAGE STAGN VERAGE STAGN VERAGE SPECE ECOVERY FACT	ALUE OF N IN OUNDARY-LAYE ISPLACEMENT OMENTUM THIC	DISPLACEME TO COMPRES: DISPLACEME USING POWE	٠ ۲/۲	.033	8.	. 195	.227	304	390	.428	.511	.5981
		< < < € 0. ∞ ∞ ∞		≪ ca	ON						-			6 14 9 15
Σ Σ	PORT=0	.7794 268E+08 66.7803 31.1210 1.4000 -9126	7.9120 .6247 .0810 .0541	CULATED	U/UINF	. 710	.800	.850	.887	. 909	676	796.	. 985	. 991
ST SECTION MEASUREM	REMOVAL			CKNESS REF CKNESS CAL FIRST TUBE	T/TINF	1.0550	039	030	.027 .023	019	010	007	000	000
E WALL TE Ary-layer	TOTAL BL	/FT Sure PSI Erature L (Inche	ہے ہے	ENTUM THICES. ENTUM THIC	P/PT	.8156	861874	89.1	915	930	959	0 0	88	960
CT ADAPTIV Wall bound	8 0.00%	NUMBER LDS NUMBER ATION TEMP R IFIC HEATS OR SCALE	POWER LAIL R THICKNES THICKNESS THET	NT AND MOME SIBLE VALUI NT AND MOME R-LAW FROM	=	.6913	784 808	837	40	900 919	776	700	984	9 6 6
0.3-M T RIGHT SIDE	13 - 7 - 1	~ ~ « « × × · · · · · · ·	UE OF N IN NDARY-LAYE PLACEMENT ENTUM THIC	DISPLACEME TO COMPRESS DISPLACEME USING POWER	>	.0337	153	195	262	341	300	9 0	511	0 00
	21		VAL BOU BOU MON SHA	 ≼ œ	. 0	- ~ +	n 4	ro xo) ~ 0	00		12	13	2 2

ECTION Surements	IOVAL PORT=0	266E+08 266E+08 66.0217 . 230.8177 . 1.4000 . 9126 . 1.0000	12.9600 : .4517 : .0356 : .0253	ESS REFER ESS CALCULATED ST TUBE.	Z	.0399 .801 .0283 .863 .0197 .907	.0102 .953 .0102 .953 .0081 .962	1.0043 .9805 1.0029 .9805 1.0015 .9933 1.0008 .9966	.0003 .998 .0004 .998 .0002 .998
WALL TEST S Y-LAYER MEA	OTAL BL REM	RE PSIA ATURE K (INCHES)	ROFILE DELTA/L LTASTAR/L L	TUM THICKNITUM THICKNITUM THICKNITAL	4	861 899 928	0000	. 9883 9884 9843 9971 9970	0 0 0 0 0 0
T ADAPTIVE All Boundar	1.76% 1	UMBER/F TION PRESSU TION TEMPER FIC HEATS R TH SCALE L	POWER LAW P THICKNESS HICKNESS DE NESS THETA/	T AND MOMEN 181E VALUES T AND MOMEN -LAW FROM W	Z	785 851 898	4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		9 9 8 9 9 8 9 9 8
0.3.M TC	. 7 . 21	GE MACH NO GE STAGNA GE STAGNA GE STAGNA GE STAGNA GE STAGNA GE STAGNA GE SPECTO ENCE LENG	ARY-LAYER ACEMENT TIUM THICK	SPLACEMEN COMPRESS SPLACEMEN	_	033	195	3013	511 556 598
ж 1	213	A A A A A A A A A A A A A A A A A B	NA PER NA	A: D1 10 10 10 8: D1 US	0 %	- am	4 NV 40 1	86011	13 14 15
ν	R T = 0	7807 E+08 7721 8819 6600 4000 9126	2068 4895 0455 0319 4273	ILATED	<u> </u>	777 840 883	9000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	997 997 998
SECTION Asurement	MOVAL PO			NESS REFER NESS CALCU RST TUBE.	z	227	7 7 2 6	1.0013	000
WALL TEST Y-LAYER ME	OTAL BL RE	T RE PSIA ATURE K (INCHES)	ROFILE DELTA/L LTASTAR/L L	TUM THICKN TUM THICKN ALL TO FIS	T 4 / 4	849 884 912	9 4 5 8 9 6 5 8 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000
T ADAPTIVE 'S All Boundary	1.00% TC	UMBER DS NUMBER/FI TION PRESSUR TION TEMPER/ FIC HEATS TH SCALE L	POWER LAW PI THICKNESS I HICKNESS DEI NESS THETA/I	T AND MOMENIBLE VALUES T AND MOMEN-LAW FROM W	4NIW/W	761 826 872	9 2 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9625	997
0.3-M TC GHT SIDEW	. 7 . 20	GE MACH NGE RECNOL GE STAGNA TO STAG	OF N IN ARY-LAYER ACEMENT T TUM THICK FACTOR	ISPLACEMENO O COMPRESS ISPLACEMEN SING POWER	٧/١	033 075 118	153 195 227	3 4 1 7 3 4 1	511 511 598 598
а П	213	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	VALUE BOUND DISPL MOMEN		0	- 0 m	4 W Ø I	~ & & O = _ C	124

ST SECTION	ASUREMENTS
L TEST	AYER ME
APTIVE WALL TE	UNDARY-L
·M TCT ADAP	
0.3·M	IGHT SID
	α

0.3-M TCT ADAP RIGHT SIDEWALL BO	TIVE WALL TEST UNDARY-LAYER M OX TOTAL BL R	SECTION EASUREMENTS EMOVAL PORT=	0	RIGH 213 .	.3.M TCT SIDEWAL 8 . 23	ADAPTIVE WAL L BOUNDARY-L O.50% TOTA	L TEST S AYER MEA L BL REM	ECTION SUREMENTS OVAL POR	T = 0
RAGE MACH NUMBER RAGE REYNOLDS NUM RAGE STAGNATION P RAGE STAGNATION T RAGE STAGNATI	MBER/FT PRESSURE PSIA TEMPERATURE K EATS ALE L (INCHES)	268E+0 268E+0 232.828 	08000000	AVERAGE AVERAGE AVERAGE AVERAGE PRATIO O O O RECOVER	MACH NUM REYNOLDS STAGNATI STAGNATI NUMBCATI NOMBCE F SPECIFI Y FACTOR	BER NUMBER/FT ON PRESSURE ON TEMPERATU C HEATS	PSIA URE K INCHES)		1048 ++08 +447 720 000 1126
UE OF N IN POWER NDARY-LAYER THICK PLACEMENT THICKNE ENTUM THICKNESS T	LAW PROFILE NESS DELTA/L SS DELTASTAR/L HETA/L	7.958 6098 	O \$2 13 14 AV	VALUE O BOUNDAR DISPLAC MOMENTU	Y-LAYER TY-LAYER TEMENT THI	WER LAW PRO HICKNESS DE CKNESS DELT SS THETA/L	FILE LTA/L ASTAR/L	0	5322 0556 0381 4589
DISPLACEMENT AND TO COMPRESSIBLE V DISPLACEMENT AND USING POWER-LAW F	MOMENTUM THICK ALUES. MOMENTUM THICK ROM WALL TO FI	NESS REFER NESS CALCULAT RST TUBE.	ш D	A: DISP B: DISP USIN	LACEMENT OMPRESSIB LACEMENT G POWER-L	AND MOMENTULE VALUES. AND MOMENTUAN FROM WAL	THICKNE THICKNE	SS REFER SS CALCUI T TUBE.	LATED
L M/H1	NF P/P	F U/	UINF	. 0 ⊀	1/k			2	U/UINF
0337 . 69 0754 . 74 1184 . 78	30 .808 96 .836 78 .857	.057	712 767 803	- 0 m	33	7416 8056 8493	8307 8660 8925	050.	759 821 862
1530 .81 1955 .84	21 . 871	036	826 854	4 W	800	8750 9016	9091	.020	910
2272 2624 .88 3043 .90	98 .900 16 .914 56 .930	028	871 892 914	9 ~ 8	627	915 <i>7</i> 9302 9452	9367 9470 9578	.017	923 936 950
3417 .92 3903 .94	243 43 86 86 86 86 86 87	010.	931		2 0 0 2	9566 9714 9809	9663 9775 9849	900.	960
N 8 0 0	. w w w	1.0051 1.0028 1.0016	. 9778 . 9877 . 9931	132	. 5567 . 5567	9874	9900	1.0008 1.0008	9966
5981 .99	266. 59	.000	966		8	9985	8866	000.	998

0.3-M TCT RIGHT SIDEW	T ADAPTIVE All Boundar	WALL TEST ? Y-LAYER ME/	SECTION Asurements		0 R I G H	.3-M TCT T SIDEWAL	ADAPTIVE W L BOUNDARY	ALL TEST S -LAYER MEA	SECTION Asurement	v
213 . 8 . 24	1.00%	OTAL BL RE!	MOVAL PORT	1=0	213 -	8 · 25	1.80% 10	TAL BL REI	MOVAL PO	R T = 0
VERAGE MACH NIVERAGE REYNOLIVERAGE STAGNAVERAGE STAGNAVERAGE STAGNAVERAGE STAGNAVERATIO OF SPECI	UMBER DS NUMBER/F TION PRESSU TION TEMPER FIC HEATS	T RE PSIA ATURE K	8.0 1.0 7.4.0	005 365 120 000	AVERAGE AVERAGE AVERAGE PRANDTU RATIOO	E MACH NULLE STAGNATE STAGNATE STAGNATE LAUMBER LAUMBER OF SPECIF	MBER S NUMBER/FT ION PRESSUR ION TEMPERA IC HEATS	E PSIA TURE K	272	8048 E+08 3702 8500 4000 9126
FERENCE LEN LUE OF N IN		(INCHES) ROFILE DELTA/L	11.2	00 61 89	ALUE	F N IN	WER LAW PI	OFILE ELTA/L	13	412
ISPLACEMENT TOMENTOMENTUM THICK	THICKNESS DE Kness theta/	LTASTAR/L L		457 1318 389	DISPLA(MOMERATISHAPE	CEMENT THUM THICKN FACTOR	ICKNESS DEL ESS THETA/L	TASTAK/L		. 0242
: DISPLACEMEN TO COMPRESS : DISPLACEMEN USING POWER	NI AND MOMEN Sible values Ni and momen R-law from h	NTUM THICKNS: NTUM THICKN	VESS REFER Ness calcul RST Tube.	ATED	A: D1S 10 B: D1S US1	PLACEMENT COMPRESSI PLACEMENT NG POWER-	AND MOMEN BLE VALUES AND MOMEN LAW FROM W	TUM THICKN TUM THICKN ALL TO FIR	ESS REFE ESS CALC ST TUBE.	R ULATED
۸۰. ۲/۲	M/MINF	P / P T	T/TINF	U/UINF	. 0 %		2	Δ.	NIL	44 14
.033	62	143	045	79	- 21	33	855	960	029	267
. 118	371	707	025	383	W 4 1	5.3	228	63	014	35
195	326 936	943	015	331	n 0 r	227	962	700	007	996
304	949	961	010.	4	. 60 0>	304	980	986	007	2000
390	971	0 00 0 0 00 0	003	985	011	390	766	, o o		966
112 . 4696 12 . 4696 13 . 5114 14 . 5567	. 9941	9982	1.0012	. 9947 . 9982 . 9982	7 1 1 1 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	5114	9983	. 9986 . 9980 . 9986	1.0004	. 9985 . 9978 . 9984
265.	666	666	00.	666	2					

TEST SECTIO	YER
=	-
3	>
DAPTIVE	L BOUNDARY-LI
<	-
0.3-H TCT A	SIDENAL
0	RIGHT

213 - 9 - 26	RIGHT SIDEWALL BO	OUNDARY-LAYER M	EASUREMEN.	S L	œ	0.3-M TC	T ADAPTIV	E WALL TEST ARY-LAYER M	SECTION Easureme	S
VERAGE MACH NUMBER FT 1	13 - 9 - 26 0.0	OX TOTAL BL	MOVAL P	≈	_	9 - 2	0.5×	OTAL BL R	MOVAL	7 0 ⊢
### CONTRINGER CALE CINCHES) 1.4000 PARIDIE CHERTS 1.4000 #### CONTRICT FERRICE CINCHES) 1.4000 ##################################	VERAGE MACH NUMBER VERAGE REYMOLDS MU VERAGE STAGNATION VERAGE STAGNATION	ER/FT ESSURE PSI MPERATURE	.26 74 230	653 E+0 429 756	> > > > > > > > > > > > > > > > > > >	GE MACH	UMBER DS NUMBER TION PRES	FT URE PSI	2.	.649 9E+0 .552
ALUE OF W IN POUR LIAN PROFILE : .6284 BOUNDARY LAYER THICKNESS DELTA/L : .6284 BOUNDARY LAYER THICKNESS DELTA/L : .6284 BOUNDARY LAYER THICKNESS DELTA/L : .0550 SPECIAL CHEMINA THICKNESS DELTA/L : .0550 HAPE FACTOR THICKNESS PREFER THICKNESS DELTA/L : .0550 HAPE FACTOR THICKNESS THETA/L : .0550 HAPE FACTOR THICKNESS PREFER THICKNESS DELTA/L : .0550 HAPE FACTOR THICKNESS PREFER THICKNESS PREFER THICKNESS PREFER THICKNESS PREFER TO COMPRESSIBLE WILLES THICKNESS PREFER THICKNESS	KANDIL NOMBER ATIO OF SPECIFIC H ECOVERY FACTOR EFERENCE LENGTH SC	ATS Le L (INCHES		760 400 912 000	R A A A A A A A A A A A A A A A A A A A	TE NUMBE OF SPEC ERY FACT	FICHEATS R CONTRACT	KAIURE K	23	. 683 . 760 . 400 . 912
The factor of	OUNDARY-LAYER THIC	AW PROFILE ESS DELTA/L	7	639	ALU	OF N IN	POWER LAW THICKNES	L (INCHES PROFILE DELTA/L		000 749 534
The compressible values	1971ACEMENT THICKNESS THAPE FACTOR	S DELTASTAR/ Eta/l	-	080 056 435	I SPOME	ACEMENT TUM THIC	HICKNESS Ness thet	ELTASTAR/ /L	-	055 039 378
V/L M/MINF P/PT T/TINF U/UINF NO. Y/L M/MINF P/PT T/TINF U/UINF .0337 .6897 .8627 1.0395 .7568 2 .7573 .8810 1.0338 .749 .0754 .7645 .8827 1.0290 .7926 2 .0754 .8027 .9064 1.0261 .813 .153 .8827 .7926 .7926 3 .0754 .8027 .9064 1.0261 .813 .153 .8837 .9967 1.0226 .8430 .7726 .915 .9565 1.0172 .856 .2272 .8520 .9264 .1026 .8430 .7272 .913 .9498 1.0173 .8819 .72624 .9298 1.0177 .948 1.0177 .948 1.0177 .948 1.0177 .948 1.0177 .948 1.0177 .948 1.0178 .926 1.0178 .926 1.0178 .926 1.0178 .926 1.0178 <th>DISPLACEMENT AND TO COMPRESSIBLE V DISPLACEMENT AND USING POWER-LAW F</th> <th>OMENTUM THICK LUES. OMENTUM THICK OM WALL TO FI</th> <th>ESS REFE ESS CALCI ST TUBE.</th> <th>LATE</th> <th></th> <th>SPLACEME COMPRES SPLACEME ING POWE</th> <th>AND MOM BLE VALU AND MOM LAW FROM</th> <th>TUM THICK! TUM THICK! ALL TO FII</th> <th>ESS REF ESS CAL ST TUBE</th> <th>R ULATEI</th>	DISPLACEMENT AND TO COMPRESSIBLE V DISPLACEMENT AND USING POWER-LAW F	OMENTUM THICK LUES. OMENTUM THICK OM WALL TO FI	ESS REFE ESS CALCI ST TUBE.	LATE		SPLACEME COMPRES SPLACEME ING POWE	AND MOM BLE VALU AND MOM LAW FROM	TUM THICK! TUM THICK! ALL TO FII	ESS REF ESS CAL ST TUBE	R ULATEI
. 1934	1/4 1/4 ·	F P/P	/TIN	/ U I N		_	MIM/	_	/TIN	10/
1530 .8967 1.0290 .7926 3 .1184 .8483 .9256 1.0205 .8142 .8142 .81483 .9256 1.0205 .8150 .9256 1.0205 .8550 .9265 1.0205 .8813 .9700 1.0205 .8813 .8737 .9770 .9498 1.0172 .8813 .9265 1.0205 .8810 .9270 .9482 1.0117 .9270 .9272 .9153 .9565 1.0117 .9270 .9272 .9153 .9565 1.0117 .9270 .9272 .9187 .9784 1.0077 .948 .9270 .9272 .9273 .9769 1.0077 .948 .9270 .9270 .94843 1.0077 .959 .94843 1.0077 .959 .94843 1.0061 .978 .94843 1.0061 .978 .98843 1.0061 .978 .98843 1.0061 .978 .98843 1.0061 .998 .9885 1.0061 .998 .9885 1.0061 .998 .988 1.0061 .998 .988 .998 .998 .998 .998 .998 .998	. 0554	7 .862 5 .882	.039	703	- 0	033	737	881	. 033	672
1955 .8336 .9184 1.0226 .8430 .8737 .9370 1.0172 .88136 .2272 .8520 .9265 1.0226 .8606 6 .2272 .9013 .9498 1.0136 .907 .2624 .8766 1.0173 .8819 7 .2624 .9298 .9636 1.0117 .920 .3043 .9482 1.0141 .9055 8 .3043 .9450 .9711 1.0077 .948 .3417 .9487 .9769 .9450 .9769 .9769 1.0077 .948 .4289 .9601 .9786 1.0080 .9474 10 .3903 .9769 .9843 1.0067 .9874 1.0067 .9863 .9805 1.0028 .981 .5486 .9966 .9856 1.0013 .9956 1.0013 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956<	. 1530 . 80	3 .896 7 .905	.029	792	M	118	848	906 925	. 026	813 856
2624 .8606 6 .2272 .9153 .9565 1.0117 .9819 .3043 .9480 .94819 7 .2624 .9988 .9636 1.0117 .936 .3043 .9482 .9482 1.0114 .9055 8 .3643 .9450 .9711 1.0077 .948 .3417 .9187 .9771 1.0114 .9240 .9748 .9653 .9769 1.0077 .948 .3903 .9450 .9776 .9769 1.0061 .959 .4686 .9781 1.0077 .978 .4686 .9769 .9916 1.0012 .9856 1.0022 .9856 .5114 .9927 .9926 1.0010 .993 .5567 .9950 1.0007 .9956 1.0007 .9956 .5981 .9958 1.0007 .9958 1.0007 .9958	. 1955	918	. 022	84.3	4 10	153 195	873	070	.017	881
3443 .9685 1.0141 .9055 1.0098 .934 3417 .9187 .9240 .9240 .9450 .9711 11.0077 .948 .3417 .9187 .9771 1.0014 .9240 .9450 .9711 11.0077 .948 .3437 .9729 .9786 1.0067 .9629 10 .3903 .9769 .9843 1.0061 .9729 .4696 .9729 .9854 1.0067 .9863 .9805 1.0028 .981 .5114 .9986 .9960 1.0022 .9856 1.0020 .987 .5567 .9909 .9950 1.0013 .9956 1.0010 .993 .5981 .9953 .9974 1.0007 .995 .5981 .9975 1.0007 .9956 1.0007 .995	2624 . 87	3	.020	860 881	10	227	915	926	. 011	920
.3903 .9437 .9701 1.0080 .9474 10 .3903 .9769 1.0061 .959 .4289 .9601 .9786 1.0057 .9629 11 .4289 .9805 .9843 1.0042 .972 .4696 .9729 .9854 1.0039 .9748 12 .4696 .9863 .9926 1.0028 .987 .5514 .9845 .9916 1.0022 .9856 13 .5114 .9927 .9960 1.0010 .993 .5567 .9909 .9950 1.0013 .9916 14 .5567 .9951 .9974 1.0007 .995	.3417 .91	2 . 948 7 . 957	014	905	~ ∞	304	945	965 971	.009 .007	934
. 4696 . 9729 . 9854 1.0039 . 9748 12 . 4696 . 9865 . 9895 1.0028 . 981 . 981 . 981 . 981 . 981 . 981 . 981 . 981 . 9826 1.0020 . 985 . 9856 . 9856 . 9856 . 9856 1.0020 . 985 . 9950 . 9950 1.0013 . 9916 5567 . 9951 . 9954 1.0007 . 995 9954 1.0007 . 995 9954 1.0007 . 995 9954 1.0007 . 995 9955 1.0007 . 995 99586 1.0004 997	. 4289 . 94	7 .970	0008	776		341 390	956 970	976984	.006	959
. 5567 . 9950 . 9950 . 9956 . 13 . 5114 . 9957 . 9960 . 9970 . 99	76. 696.	985	. 003	726		428	980	989	.002	981
595. 1000.1 5986. 1598. 1598. 1598. 1000.1 5986. 1000.1 5987. 1598.	7556.	200.	.002	985		511	992	966	. 001	900
			. 000			598	266	966	0000.	7 6 6

0.3-M TCT ADAPTIVE WALL TEST SECTION RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS	213 - 10 - 32 0.00% TOTAL BL REMOVAL PORT=0	FT 270E+08 SURE PSIA : 63.0846 ERATURE K : 130.5746 : 7601 : 1.000	VALUE OF N IN POWER LAW PROFILE : 7.6239, BOUNDARY-LAYER THICKNESS DELTA/L : .5948 DISPLACEMENT THICKNESS DELTASTAR/L : .0708 MOMENTUM THICKNESS THETA/L : .0541 SHAPE FACTOR : 1.3082	RESSIBLE VALUES. EMENT AND MOMENTUM THICKNESS REFEMENT AND MOMENTUM THICKNESS CALOWER-LAW FROM WALL TO FIRST TUBE	Y/L M/MINT P/FI 1/12 (700)	0337 0754 1184	25	2/2/2 . 2007 . 2875 1.0033 . 893 2624 . 8916 . 9902 1.0026 . 917	9 3547 9342 39922 1.0020 935 9 3903 9510 9941 1.0015 951	956. 1.001. 3960 4.001. 3960 5.000. 3960 5.000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0	5567 .9915 .9990 1.0004 .988 .9915 .9990 1.0003 .999	5 5981 3444. 0544. 1865. 5
	0 =	355 34 11 00 00 26	757 962 463 340 642	LATED	u_	.7678 .8320 .8769	901	993	900	986	000	866
ECTION SUREMENTS	OVAL PORT	230.65 230.65 230.65 1.40	10.67	NESS REFER Ness calcu RST Tube.		03	014	. 009 . 007	200.	00.		00.
ALL TEST S -LAYER MEA	AL BL REMO	E PSIA Ture K (Inches)	ROFILE DELTA/L LTASTAR/L L	TUM THICK TUM THICK ALL TO FI	P/PT	~ ~ ~	0 4 6 0 5 9	965 971	9 7 8 9 9 9 9 9 9	766	9982 9982 9885	566
ADAPTIVE W L BOUNDARY	1.0% TOT	4BER S NUMBER/FT ION PRESSUR ION TEMPERA IC HEATS H SCALE L	OWER LAW PRITHICKNESS () ICKNESS DEI	AND MOMEN BLE VALUES AND MOMEN LAW FROM W	M/MINF	55	394	346	989	981	. 9926 . 9967 . 9972	366
0.3-M TCT HT SIDEWAL	9 - 29	E MACH NUP E REYNOLDS E STAGNATI E STAGNATI OF SPECIF OF SPECIF NCE LENGT	OF N IN POARY-LAYER TACEMENT TH	SPLACEMENT COMPRESSI SPLACEMENT ING POWER-	٨/١	33	153	227	304	390 428	. 5114	265
R 1 G	213 -	AVERAGI AVERAGI AVERAGI PRANDI RECOVE	ALUE OUND I SPL IOMEN	A: 01 TO B: 01 US	0 X	- 2	W 4 r	n 4 h	. 0	10	132	154

T ADAPTIVE WALL TEST	ALL
10	T.
0.3-M TC	SID
0	RIGHT

O.3-M TCT ADAPTIVE WALL TEST SECTION RIGHT SIDEWALL BOUNDARY·LAYER MEASUREMENTS	213 - 10 - 34 0.80% TOTAL BL REMOVAL PORT=0	MBER/FT : 2 PRESSURE PSIA : 6 TEMPERATURE K : 12 EATS : 6	ALUE OF N IN POWER LAW PROFILE : 9.669 SUNDARY-LAYER THICKNESS DELTA/L : .497; ISPLACEMENT THICKNESS DELTASTAR/L : .0466 NENTUM THICKNESS THETA/L : .037; APPE FACTOR : .1.252	REFER CALCULATI TUBE.	I W / W	5700 1 5079, 5454	787. 250. 1979. 2518. 3815. 10055	9835 .9846 1.0041 .869	1955 . 9190 . 9903 1.0025 . 920	2624	9585 .9949 1.0019 .942	956. 100:1 5963 1.0010 050	0.76. 1.000.1 4799. 8879. 2825.	900, 1,000, 1,000, 9887	266. 1000.1 5666. 2566. 7153	766. 1000.1 7666. 7766. 4116.	5.58
U.S.M. ICT ADAPTIVE WALL TEST SECTION Right Sidewall Boundary-Layer Measurements	213 - 10 - 33 0.50% TOTAL BL REMOVAL PORT=0	FRAGE MACH NUMBER FRAGE REYNOLDS NUMBER/FT FRAGE STAGNATION PRESSURE P ERAGE STAGNATION TEMPERATURE ANDTL NUMBER TIO OF SPECIFIC HEATS COVERY FACTOR FERENCE LENGTH SCALE L (INC	ALUE OF N IN POWER LAW PROFILE : 8.883: DUNDARY-LAYER THICKNESS DELTA/L : .531; ISPLACEMENT THICKNESS DELTASTAR/L : .054; DMENTUM THICKNESS THETA/L : .043(HAPE FACTOR : .1.269(A: DISPLACEMENT AND MOMENTUM THICKNESS REFER TO COMPRESSIBLE VALUES. B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED USING POWER-LAW FROM WALL TO FIRST TUBE.	· Y/L M/MINF P/P	.055, .7281 .9706 1.0078 .730 .0756 .0756	1184 . 8473 . 9823 1.0047 . 849	. 1955 . 8631 . 9840 1.0042 . 865 . 1955 . 8972 . 9872 . 985	. 2272 . 9085 . 9890 1.0020 . 908	2624 .9251 .9909 1.0024 .926	99 .3043 .9444 .99	0 .3903 .9693 .9962 1.0014 .958	996. 0100.1 2066. 5813 . 9977 1.0006. 6813	2 .9909909988 1 0003 .999	3 1.000 2000 1 2000 7500 7113.	7567 .9961 .9995 1.0001 .998	5981 .9962 .9995 1.0001 .996

CTION UREMENTS	VAL PORT=0	270E+08 270E+08 40.3580 . 129.8244	1.400 .912 1.000 9.253	0565 0427 1.3218	S REFER S CALCULATED TUBE.	TINF U/UINF	.0206 .740 .0161 .803 .0129 .846	.0111 .869 .0088 .898 .0077 .911	.0064 .926	.0040 .0028 .0019 .0019	.00012 .9868 .0006 .9931 .0003 .9962 .0002 .9981	
ALL TEST SE ·LAYER MEAS	TAL BL REMO	iE PSIA ITURE K	(INCHES) Rofile Delta/L	LTASTAR/L L	TUM THICKNES TUM THICKNES ALL TO FIRST	/ P.T	9251 9406 9522	9586 9671 9711	9757	9848 9895 9928	. 9955 . 9976 . 9987 . 9993	
T ADAPTIVE W All Boundary	0.50% TO	UMBER DS NUMBE TION PRE	FIC HEATS R TH SCALE L POWER LAW P THICKNESS	HICKNESS DE Ness theta/	T AND MOMEN IBLE VALUES I AND MOMEN LAN FROM W	22	733 797 841	8 6 4 8 9 4 9 0 7	923	52 67 78	. 9862 . 9928 . 9960 . 9980	
O.3-M TC Right Sidew/	3 · 11 · 36	RAGE MACH NI RAGE REYNOL RAGE STAGNA RAGE STAGNA NDTL NUMBER	O OF SPEC VERY FACT RENCE LEN E OF N IN DARY-LAYE	PLACEMENT T ENTUM THICK PE FACTOR	DISPLACEMEN TO COMPRESS DISPLACEMEN USING POWER	/ }	033 075 118	153	262	341 390 428	. 5114 . 5567 . 5981	
	21	A A A A A A A A A A A A A A A A A A A	∢ шш ∢ 0	N I O I W	 ∢ es	.03	- 0 M	4 10 4	0 ~ 60		13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
S LI	PORT = 0	.5016 71E+08 0.3588 9.7746	400 912 000 656	.0758 .0556 1.3634	ER CULATED	U/UINF	.702	. 817	.887	9 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	9857 9857 9851 9921	
T SECTION Measuremen	REMOVAL P				CKNESS REF CKNESS CAL FIRST TUBE	T/TINF	023	212	000	000	1.0022	
E WALL TES ARY-LAYER	TOTAL BL	/FT Sure PSIA Erature K	L (INCHES PROFILE S DELTA/L	DELTASTAR/ A/L	ENTUM THI ES. ENTUM THI WALL TO	1 d / d	915	958 953 952	957	976	9789. 99169. 9950. 9970.	•
CT ADAPTIVI Wall Bound	\$ 0.00 %	NUMBER LDS NUMBER ATION PRES ATION TEMP	K IFIC HEATS OR GTH SCALE POWER LAN	THICKN Kness	NT AND MOM SIBLE VALU NT AND MOM R-LAW FROM	M/HINF	694 750	789 811 843	882	925	.9620 .9744 .9851 .9918	,
O.3-M TO	3 - 11 - 39	RAGE MACH RAGE REYNO RAGE STAGN	DIL NUMBE O OF SPEC VERY FACT RENCE LEN E OF N IN	PLACEMENT ENTUM THI PE FACTOR	DISPLACEME TO COMPRES DISPLACEME USING POWE	1/1	033	118 153 195	2227	341	. 55567	20
_	213	A A A A A A A A A A A A A A A A A A A	R E E E E E E E E E E E E E E E E E E E	N T T	 ≪ œ	0 x	- 2	w 4 w	9~0	000	132	_

TEST SECTION ER MEASUREMENTS BL REMOVAL PORT=0	: .265E+08 : .265E+08 K : 130.4389 : .7600 : 1.4000 : .9126 : .9126	R/L: .0785 : .0785 : .0519	ICKNESS REFER ICKNESS CALCULATED FIRST TUBE.	7 T/TINF U/UINF 9 1.0587 .7215 6 1.0490 .7743 3 1.0426 .8074 5 1.0381 .8299 5 1.0291 .8570 8 1.0291 .8732 5 1.0200 .9146 6 1.0162 .9313 7 1.0162 .9533	1.0032 .987 1.0017 .993 1.0007 .993
T ADAPTIVE WALL ALL BOUNDARY-LAY 0.00% TOTAL	UMBER DS NUMBER/FT TION PRESSURE PS TION TEMPERATURE FIC HEATS R	POWER LAW PROFILE THICKNESS DELTA/ HICKNESS DELTASTA NESS THETA/L	T AND MOMENTUM THIBLE VALUES. T AND MOMENTUM TH	7012 7012 7012 7014 804 804 8614 8614 8614 8614 8614 8614 9614 9614 9614 9614 9614 9614 9614 9	9855 .988 9923 .993 9968 .997
0.3-M TC RIGHT SIDEW 213 - 12 - 38	AVERAGE MACH N AVERAGE REYNOL AVERAGE STAGNA AVERAGE STAGNA PRANDTL NUMBER RATIO OF SPECT RECOVERY FACTO	VALUE OF N IN BOUNDARY-LAYER DISPLACEMENT T MOMENTUM THICK SHAPE FACTOR	A: DISPLACEMEN TO COMPRESS B: DISPLACEMEN USING POWER	NO. Y/L 2 . 0337 2 . 1184 4 . 1530 5 . 2272 7 . 2624 8 . 3043 9 . 3417 10 . 3903	3 511. 5 556 5 598
SECTION ASUREMENTS MOVAL PORT=0	266E + 08 . 39.6549 . 129.8313 . 7600 . 1.4000 . 9126	. 10.3355 . 5049 0467 0359 1.2993	ESS REFER ESS CALCULATED ST TUBE.	1.0192 . 7606 1.0145 . 8264 1.0145 . 8715 1.0091 . 8715 1.0068 . 9225 1.0058 . 9338 1.0028 . 9592 1.0028 . 9689 1.0012 . 9867 1.00012 . 9867	.0004 ,995 .0003 ,997 .0002 ,998
ADAPTIVE WALL TEST LL BOUMDARY-LAYER ME 1.00% TOTAL BL RE	MBER S NUMBER/FT ION PRESSURE PSIA ION TEMPERATURE K IC HEATS	OWER LAW PROFILE THICKNESS DELTA/L ICKNESS DELTASTAR/L ESS THETA/L	AND MOMENTUM THICKNE BLE VALUES. AND MOMENTUM THICKNE LAW FROM WALL TO FIRS	M/MINF P/PT 8205 9298 8205 9466 8911 9592 9194 9745 9311 9780 9575 9862 9676 9862 9676 9862 9676 9894 9787 9930	9954 . 998 9970 . 999 9982 . 999
0.3-M TCT RIGHT SIDEWA 213 - 11 - 37	>>>> × × × ш ш	VALUE OF W IN P BOUNDARY-LAYER DISPLACEMENT TH MOMENTUM THICKN SHAPE FACTOR	A: DISPLACEMENT TO COMPRESSI B: DISPLACEMENT USING POWER-	NO. Y/L 2 .0337 3 .1184 4 .1530 5 .2624 7 .2624 8 .3043 9 .3417 10 .3903 11 .4289	556

SECTION Asurements	MOVAL PORT=0	266E+08 27.1096 . 124.9405 . 124.9405 1.4000	:	ESS REFER ESS CALCULATED ST TUBE.	1.0471 .7842 1.0351 .8446 1.0266 .8847 1.0212 .9094 1.0137 .9335 1.0136 .9559 1.0059 .9659 1.0022 .9909 1.0007 .9972 1.0007 .9981
WALL TEST Y-LAYER ME	OTAL BL RE	RE PSIA ATURE K (INCHES)	ROFILE DELTA/L LTASTAR/L L	TUM THICKNITUM THICKNI	P / B 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
T ADAPTIVE All Boundar	1.00% T	UMBER/F DS NUMBER/F TION PRESSU TION TEMPER FIC HEATS R TH SCALE L	POWER LAW P THICKNESS HICKNESS DE NESS THETA/	T AND MOMEN 18LE VALUES T AND MOMEN - LAW FROM W.	M/M 2664 83302 98732 99263 9725 9928 9939 9939 9979
O.3-M TC IGHT SIDEW	. 12 - 40	AGE MACH NAGE REYNOL AGE STAGNA AGE STAGNA AGE STAGNA O OF SPECT VERY FACTO	DARY-LAYER LACEMENT T NTUM THICK E FACTOR	ISPLACEMENO COMPRESS ISPLACEMEN	
~	213	R R R R R R R R R R R R R R R R R R R	VALU BOUN DISP MONE SHAPE	Q ⊢ Q ⊃ ≪ 88	. + ww 4 % % ~ & & 0 1 1 5 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
S 1	OR T = 0	.8213 7E+08 7E+08 .0725 .7600 .4000 .9126	.1768 .5399 .0569 .0387	R ULATED	U/UINF 7607 8200 88591 98834 9208 92084 9594 9594 9594 9655
SECTION	MOVAL P			ESS REFEI ESS CALCI ST TUBE.	1/110519 1.0519 1.0222 1.0232 1.0232 1.0123 1.0065 1.0065 1.0065 1.00065
WALL TEST RY-LAYER ME	TOTAL BL RE	URE PSIA RATURE K L (INCHES)	PROFILE DELTA/L ELTASTAR/L /L	NTUM THICKNISS. NTUM THICKNI	7
T ADAPTIVE All Bounda	0.50%	UMBER DS NUMBER/ TION PRESS TION TEMPE FIC HEATS TH SCALE	POWER LAW THICKNESS HICKNESS D HESS THETA	T AND MOME! IBLE VALUE: T AND MOME! -LAW FROM 1	7 7 7 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 9 8 8 8 7 1 7 7 8 8 8 8 7 1 7 7 8 8 8 8 7 2 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
O.3·M TC RIGHT SIDEW	12 - 39	AGE MACH AGE STAGNA AGE STAGNA AGE STAGNA AGE STAGNA OT NUMBER O OF SPECTO KEN G LENG	DARY-LAYER LACEMENT T NTUM THICK	ISPLACEMEN O COMPRESS ISPLACEMEN SING POWER	7 / L 0 0 3 3 7 10 75 4 11 75 8 12 2 7 2 2 2 7 2 2 2 7 2 3 3 4 1 7 3 4 1 1 7 5 5 6 7 5 5 6 7 5 5 6 7
~	213	R R R R R R R R R R R R R R R R R R R	VALU BOUN DISP MOME STAP	v = 0.⊐	3 - 0 m 4 m 4 m 4 m 6 m 4 m 4 m 4 m 4 m 4 m 4

ECT 10N Surements	OVAL PORT=0	268E+08 268E+08 35.4939 151.7030 7600 4000 9126 0000	. 079 . 079 . 052 . 1	ESS REFER ESS CALCULATED ST TUBE.	INF U/UIN	.0614 .723 .0514 .775 .0447 .808 .0401 .830	.0343 .856 .0309 .872 .0264 .891	1.0215 .9127 1.0176 .9294 1.0123 .9512 1.0091 .9643	. 0035 . 0035 . 0019 . 0008
ALL TEST S -LAYER MEA	TAL BL REM	TURE TURE CINCHI	EL TA Tast	TUM THICKNETUM THICKNE	P / P T	797 826 846 861	879 891 905	. 9223 . 9361 . 9547 . 9664	986 995 996
ADAPTIVE W Ll boundary	0.00% TO	S NUMBER/F. S NUMBER/F. ION PRESSU ION TEMPER. IC HEATS H SCALE L	THICKNESS ICKNESS DE	AND MOMEN BLE VALUES AND MOMEN LAW FROM W	H/MIN/	702 756 790 814	842 859 880	. 9030 . 9214 . 9454 . 9599	984 994 996
0.3-M TCT GHT SIDEWA	- 13 - 42	GE MACH NUI GE STAGNATO GE STAGNAT TE NUMBER OF SPECIF ERY FACTOR ENCE LENGT	ARY-LAYER Acement t Tum thick Factor	SPLACEMENT COMPRESSI SPLACEMENT	٧/٢	033 075 118 153	195 227 262	3417 3903 4289	5 5 6 5 5 6 5 9 8 5 9 8
 «с	213	A A A A C E R A A A C E R A A A C E R B A C E R B A B A B A B A B A B A B A B A B A B	I SP OME	. A . B . D I . S . US	0	- NM 4	· v • v	8000	2 2 4 1 5 1 5
	T = 0	1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.578 3361 1254 249	LATED	U/UINF	805 866 906	953 953 961	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0
SECTION A Surements	MOVAL POR	262.		ESS REFERES CALCUST TUBE.	T/TINF	043	016	1.0070 1.0049 1.0034 1.0018	0000
WALL TEST Y-LAYER ME	OTAL BL RE	TURE C 1 NC	DELTA/L LTASTAR/L L	TUM THICKN TUM THICKN ALL TO FIR	1 4 / 4	852 891 921	9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 9814 . 9871 . 9931	9 6 6 6 9 6 6 6 9 6 6 6
ADAPTIVE I	1.80% T	MBER SONUMBER, SONUMBER, SON TEMPP SCALE H SCALE	THICKNESS ICKNESS D ESS THETA	AND MOMEN BLE VALUES AND MOMEN LAW FROM W	H/HINF	789 853 897	923	.9677 .9772 .9842 .9916	900 900 900 900
0.3-M TCT Ght Sidewal	- 12 - 41	GE MACH NUGE STAGNAT GE STAGNAT G	ARY-LAYER ACEMENT TH TUM THICKN FACTOR.	SPLACEMENT COMPRESSI SPLACEMENT ING POWER-	٧/٢	033 075 118	153 195 227	. 2624 . 3043 . 3903 . 4289	469 511 556 598
R 1	213	FETARER FETARES FETARE	BOUND DISPL MOMEN	A: DI 10 8: DI	0 x	- 0 m	4 N 0 1	/ 8 9 0 <u>1</u> 1	12 13 15

SECT 10N A SUREMENTS	MOVAL PORT=0	269E+08 269E+08 35.4116 7600 7600 	: 11.6066 : .5078 : .0475 : .0325 : 1.4598	S REFER S CALCULATED TUBE.	111NF U/UINF	1.0290 .8436 1.0290 .8819	.0236 .905 .0181 .928 .0154 939	.0096 . 952 .0096 . 962	.0074 .971 .0046 .982	. 00009 . 00009 . 00009	.0006 .0000 .0000
0.3-M TCT ADAPTIVE WALL TEST S GHT SIDEWALL BOUNDARY-LAYER MEA	OTAL BL REI	RE PSIA ATURE K (INCHES)	ROFILE DELTA/L LTASTAR/L L	THICKN TO FIR	7 / 4	. 8972 . 8972	915 934 94	954	972 982 988	966 966	6 6 6 6 6 6
	1.00%	MBER S NUMBER/F ION PRESSU ION TEMPER IC HEATS	OWER LAW P THICKNESS ICKNESS DE ICKNESS DE ESS THETA/	AND MG BLE VAI AND MG LAW FRG	X Y	. 8282 . 8694	894 919 93	945	967 980 980	999 999	666 666
	- 13 - 45	GE MACH NU GE STAGNAT GE STAGNAT TE NUMBEN OF SPECIF ERY FACTOR	OF N IN PARY-LAYER ACEMENT TH	SPLACEI COMPRI SPLACEI ING POL	\ \ \ \ \	.0754	153 195 227	262 304	341390	4 6 9 4 6 9 5 1 1	5 5 6 5 9 8
~	213	R R R P A A A A A A A A A A C E E E E E E E E E	VALUE BOUND D I SPL MOMEN		•	- N M	4 W 4	0 ~ 60		- 21	
6	RT=0	00000000000000000000000000000000000000	4 M W M M		L \	. 7665 . 8249 . 8633	886	924 937 951	961 975	82 89 90 90	966
0.3-M TCT ADAPTIVE WALL TEST SECTION Ht Sidewall Boundary-layer measurements	MOVAL POF		10.	ESS REFERESS CALCUST TUBE.	2 1	1.0551 1.0411 1.0328	027	015	900	004	000
	OTAL BL RE	T PSIA ATURE K (INCHES)	ROFILE DELTA/L LTASTAR/L L	TUM T TUM T ALL T	4	.8581 .8581 .8847	902	943	9 2 6	8 8 3	966
	0.50% T	MBER S NUMBER/F ION PRESSU ION TEMPER IC HEATS H SCALE L	OWER LAW P THICKNESS ICKNESS DE ESS THETA/	AND MC AND MC LAW FRC	Z :	. 7467 . 8085 . 8495	902	930	956 971	80	966
	. 13 - 44	GE MACH NUI GE STAGNAT GE STAGNAT GE STAGNAT TE NUMBER TOF SPECTF	OF N IN PARY-LAYER ACEMENT TH TUM THICKN	SPLACEMENT COMPRESSI SPLACEMENT ING POWER-	> 1	.0337	153	262 262 304	341	28 69 1	556 598
R 1 G	213	A A A A A A A A C E R R A A A C E R R A A A C E R R A A A C E R A A A C E C C C C C C C C C C C C C C C	LUE UND UND SPL MEN	: 01 10 10 10 10 10	. 0	- 2 8	4 W .	o ~ «	ر د د د	- 2 r	.

0.3-M TCT ADAPTIVE WALL TEST SECTION RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS

				u.	80000000000000000000000000000000000000	0 0
			۵	Z	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0	~ m m m o o o o	F 0 8 9 4	<u> </u>	5		
11	0000000	900 900	-			
-	4+80000-0	40 W W W	<	⊃		
	8 1 4 7 4 6 0	W.4. 0.0.4.	=			
. 0	1 1 5	w	a ⊃ .			
_	NMN	=	<u> </u>	14.	05074-7500044	• 🔼
	• •		w ∢ ∞	Z	4 NM N N O N M N T O O O	
_			« U ⊃	_	4 M N 0 0 0 0 0 0 0 0	
<				_	00000000000000	
<u> </u>			S S -			
Ĭ			m m co	_		
ш			2 2 2			
œ	^	_	× ×			
_	E S		21			
- H	S I	E /L AR	H H0	_	38657059125656 38657059125670	
	<u> </u>	5 ₹			48684468999999	
_	~ 2	v		آه .	8866666666666	
<	> -	<u>~</u>	x x –			
Ξ.	_ == -	R D D L 1	D D =			
2	# Z Z Z	P.R.	- · - <			
-		l o l d	<u> </u>			
	a w a w	3 × ⊢	I D I I			
34		∢ш ош	0 - 0	14.	0-7009-07808	
9	A 4 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		I < I a	Z		
۰.		& O ≥	~ ۵	Ξ.	\sim	
_		<u> Ξ</u> Ξ ω	Z Z .3	_ =		
	8 00 U	3 = 00	4 – 4 4	X		
	EVII I	0	₽ →			
_	그 유 트 트 트 플 트	A = =				
9	N J K K K I O O	32 M C)				
•	± 2 0 0 0 0 0 0	= = = = a	I W I 3	_	7400M7M7M0047	
		< Z=0	<u> </u>	_	MW8MW74-080-9	
	4 H F T D 0 F	X — — —	\circ	>-	W 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
M	I K W W Z W	E U	< X <		00FFF00MMM4466	
-	7 X O C E E E E E E E E E E E E E E E E E E	7 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	7 O J Z			
		V	S S			
	44440>2		S - 0 - 1			
M	& & & & Z - O W	⊃ zz	<u> </u>			
-	шшшш∢⊢о⊩	J⊃ N≖≪		•		
7	>>>>	₹ 0 ~0∓		0	- WW 4 W 4 W 8 W 9 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1	
	<<<<	> m O I v	≪ ∞	Z		_

_		
•		

NASA Natorial Aerorautics and Space Arministration	Report Documer	ntation Page					
1. Report No.	2. Government Accession	No.	3. Recipient's Catalog	No.			
NASA CR-4192			5. Report Date				
4. Title and Subtitle	de a aumamanta liith	Unatroom	,				
Sidewall Boundary-Layer N Suction in the Langley O			November 198				
Tunnel.		, 0	6. Performing Organiza	ation Code			
7. Author(s)			8. Performing Organization	ation Report No.			
A. V. Murthy							
			10. Work Unit No.				
			505-61-01-0	02			
9. Performing Organization Name and Address			11. Contract or Grant No.				
Vigyan Research Associate 28 Research Drive	es, inc.						
Hampton, VA 23666			NAS1-17919	I Desired Covered			
10. C A Name and Address			13. Type of Report and	renod Covered			
12. Sponsoring Agency Name and Address National Aeronautics and	Snace Administrat	ion	Contractor Report				
Langley Research Center	bpace naministrae		14. Sponsoring Agency Code				
Hampton, VA 23665-5225							
15. Supplementary Notes							
Langley Technical Monito 16. Abstract The Langley 0.3-Meter 1	Fransonic Cryogeni						
removal from the sidewatest data. This report change in the empty test model station with upstomeasurements showed that the boundary-layer thickness reduced section width. The boundary-layer moment of boundary-layer moment the section with the outer of boundary-layer moment the section with the	t describes the test section sidewal cream boundary-layat the upstream reackness at the mode from about 1.2 periodary-layer veloc region and showed	sts carried ou l boundary-lay er mass remova moval region i l station. Th rcent to about ity profiles f	er thickness and the control of the coundary-lay and percent of ollowed a power.	e the at the ary-layer a reducing yer displace- the test er law			
17. Key Words (Suggested by Author(s)) Wind tunnels Boundary-layer			d - Unlimited tegory - 02				
19. Security Classif. (of this report)	20. Security Classif. (of th	s page)	21. No. of pages	22. Price			
Unclassified	Unclassified		56	A04			